做最好的游戏平台

小电流接地系统单相接 地故障选线装置原理及发展

21ic智能电网:在我国35kV及10kV电力系统大多采用小电流接地系统,包括中性点不接地系统和中性点经消弧线圈接地系统。小电流接地系统的优点在于,发生单相接地时当线路发生单相接地故障时,故障电流的数值往往较负荷电流小的多,故障相电压降为零,非故障相电压升高为相电压的√3倍,但三相之间的线电压仍然保持对称,对供电负荷没有影响,因此规程允许继续运行1~2h。多数情况下故障能够自动消失并恢复绝缘,极大地提高了供电可靠性。但是,随着电网规模的变化和大量电缆的应用,小电流接地系统发生单相接地时,非故障相电压升高对电网设备绝缘破坏情的况不断增加:发生间歇性电弧接地,由于过电压较高破坏作用相当大;发生恒定阻抗接地,工频过电压也会对设备产生损伤,这种损伤积累到一定程度会破坏设备绝缘性能。很多变电站在单相接地持续长时间后发生了引发电力电缆爆炸、避雷器、PT爆炸或绝缘子闪络情况,易扩大为相间短路,因此,迅速确定系统接地点消除单相接地故障对系统的安全运行有着十分重要的意义。

为了确定故障线路,传统的方法是用人工逐条线路拉闸判断哪条线路出现故障,由于各种原因有时寻找故障需要相当长的时间,降低了供电可靠性,影响了供电部门和用户的经济效益。而人工拉路法选线每一次开关的断开和闭合都会对电网造成冲击,容易产生操作过电压和谐振过电压,频繁的开关操作也会减少开关使用寿命。 同时,随着对于综自和无人值班变电站的增加,一是有时集控站值班人员发现和处理接地信号时间较长,尤其是夜晚发出的接地信号,容易造成带故障长时间运行;二是逐条拉路寻找需要远方遥控操作,增加了设备的负担。所以快速准确的故障选线和定时跳闸有利于提高设备的使用寿命,提高供电可靠性;有利于减少维护检修负担和用户的停电概率,提高供电部门和用户的经济效益。

2 单相接地时小电流接地系统的主要特征

现对小电流接地系统单相接地故障前后的特征归纳如下:

2.1零序电压互感器开口电压通常为零。(实际上由于不平衡电压的影响小于5V)。接地后接近100V(金属性接地:经电阻接地Uo2∈(30,100))。(此段Uo2∈是表示什么?)

2.2非接地线路的零序电流Io为该线路对地等效电容电流,相位超前零序电压

Uo90°。

2.3 接地线路的零序电流Io和非接地线路的零序电流方向相反,即相位滞后零序电压Uo90°,且等于所有非接地线路中电容电流与变压器中性点电流之和。

2.4对经消弧线圈接地系统,零序电流5次谐波对以上结论成立。

以上结论,与故障点接地电阻,系统运行方式,电压水平和负荷无关。

3 常用的几种选线装置原理与存在的问题

目前现场应用的主要有稳态分量法、谐波分量法、暂态法、接地选线和消弧线圈一体化发等四种原理的接地选线装置。

3.1稳态分量法。

稳态分量法又分为零序电流比幅法,零序电流相对相位法,以及群体比幅比相法。

3.1.1零序电流比幅法利用的是流过故障元件的零序电流在数值上等于所有非故障元件的对地电容电流之和,即故障线路上的零序电流最大,所以只要通过比较零序电流幅值大小就可以找出故障线路。但这种方法不能排除TA不平衡的影响,受线路长短、系统运行方式及过渡电阻大小的影响,且系统中可能存在某条线路的电容电流大于其它所有线路电容电流之和的情况,装置易发生误动,不适用于经消弧线圈接地的系统。

3.1.2零序电流相对相位法是利用故障线路零序电流与非故障线路零序电流流动方向相反的特点,分别从线路流向母线或由母线流向线路,就可以找出故障线路。但这种方法在线路较短,零序电压、零序电流值较小时,相位判断困难,不能适用于谐振接地时完全补偿、过补偿运行方式。

3.1.3群体比幅比相法是综合利用零序电流比幅法和零序电流相对相位法,先进行零序电流比较,选出几个较大的作为侯选,然后在此基础上进行相位比较,选出方向与其它不同的,即为故障线路。该方法在一定程度上解决了前两种方法存在的问题,但同样不能排除CT不平衡及过渡电阻大小的影响,以及相位判断的死区,仍不适用于经消弧线圈接地的小电流系统。

3.2谐波分量法。

谐波分量法分为5次谐波大小和方向,各次谐波平方和等方法。

3.2.1 5次谐波大小和方向法,当单相接地故障时,由于故障点、线路设备的非线性影响,在故障电流中存在着谐波信号,其中以5 次谐波为主。经消弧线圈接地系统的消弧线圈是按照基波计算的,消弧线圈相当于处于开路状态。可忽略消弧线圈对5次谐波产生的补偿效果。再利用5次谐波电容电流的群体比幅比相法,就可以解决经消弧线圈接地系统的选线问题。但故障电流中5次谐波含量较小(小于故障电流10%),且受TA不平衡电流和过渡电阻的影响,选线的准确度也不是很稳定。

相关阅读